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Abstract—This article reviews several tools we have devel-
oped to improve the understanding of locomotor training fol-
lowing spinal cord injury (SCI), with a view toward 
implementing locomotor training with robotic devices. We 
have developed (1) a small-scale robotic device that allows 
testing of locomotor training techniques in rodent models, 
(2) an instrumentation system that measures the forces and 
motions used by experienced human therapists as they manu-
ally assist leg movement during locomotor training, (3) a pow-
erful, lightweight leg robot that allows investigation of motor 
adaptation during stepping in response to force-field perturba-
tions, and (4) computational models for locomotor training. 
Results from the initial use of these tools suggest that an opti-
mal gait-training robot will minimize disruptive sensory input, 
facilitate appropriate sensory input and gait mechanics, and 
intelligently grade and time its assistance. Currently, we are 
developing a pneumatic robot designed to meet these specifica-
tions as it assists leg and pelvic motion of people with SCI.

Key words: control strategies, gait training, locomotion, motor 
control, pelvic assist manipulator, pneumatically operated gait 
orthosis, rehabilitation, robotics, spinal cord injury, stroke.

INTRODUCTION

Gait training with body-weight support (BWS) and 
manual assistance of the legs and pelvis is a promising 
rehabilitation technique that may enhance locomotor plas-

ticity following neurological injuries such as spinal cord 
injury (SCI) and stroke [1–4]. However, the clinical appli-
cation of this technique is limited because it is labor inten-
sive; it requires two to three therapists to assist the 
patient’s legs and torso during each training session. 
Another limiting factor is that we do not fully understand 
the neuroadaptive mechanisms that underlie the training, 
and thus, we are not sure how to optimize the training. 
Recognizing these limiting factors, several research 
groups and a major U.S. healthcare provider (HealthSouth, 
Birmingham, Alabama) have developed robotic devices 
for automating locomotor training in humans [5–7].

The focus of each of these devices has been to drive 
the legs through a stepping pattern in the parasagittal plane 
while a patient is walking on a treadmill. These devices are 
useful platforms for automating and studying locomotor 
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training. However, they are relatively limited in the pat-
terns of forces and motions that they can apply, which 
makes investigating the full range of possible training 
techniques difficult. At present, development of appropri-
ate control strategies for these devices relies on time-
consuming and labor-intensive clinical testing. Further, 
because of their limited degrees of freedom (DOF), these 
devices alter the normal walking pattern and thus the sen-
sory input experienced during gait. For example, the 
Lokomat® (Hocoma AG , Volketswil, Switzerland) [5] 
constrains the pelvis to move only vertically and does not 
allow internal–external rotation and abduction–adduction 
of the leg, which alters the muscle activity patterns gener-
ated by even nondisabled subjects [8]. The Gait Trainer 
(Reha-Stim, Berlin, Germany) attaches to the bottom of 
the foot and does not provide the abrupt transition in 
ground reaction force that normally occurs between swing 
and stance [6]. We want patients to practice walking with 
as normal a gait pattern as possible to facilitate transfer to 
a functional gait. In terms of neural plasticity, the specific 
pattern of sensory input provided to the injured nervous 
system clearly affects levels and timing of muscle activity 
and thus patterns of plasticity over time [3,9]. Providing as 
normal as possible sensory input may make locomotor 
training more efficient.

This article reviews our recent efforts to understand 
and improve robotic gait-training techniques. These 
efforts are focused on two goals. First, we are developing 
tools that can help provide insight into the mechanisms of 
locomotor adaptation during gait training. We are using 
these tools to test training strategies in rodent models, to 
quantify therapist patterns of assistance, to assess loco-
motor adaptation to novel perturbations, and to model 
possible computational mechanisms of locomotor train-
ing. Studies with these tools are helping guide the 
progress toward our second goal, i.e., the development of 
a robotic device and appropriate control algorithms for 
human gait training.

TOOLS FOR UNDERSTANDING ROBOTIC GAIT 
TRAINING

The Rat Stepper: A Small-Scale Test Bed
 The use of animal models can potentially accelerate 

the testing of different gait-training strategies as well as 
facilitate insight into the mechanisms of locomotor plastic-
ity through invasive neuroscience techniques. To further 

our understanding of injury and recovery in a frequently 
used animal model, we developed a small robotic system 
that can measure and manipulate hind-limb stepping on a 
treadmill by spinal-injured rats [10]. The rat stepper incor-
porates a motorized treadmill, a BWS system, and a pair of 
lightweight robot arms that attach to the animal’s hind 
limbs (Figure 1). The robot arms can be operated in a 

Figure 1.
(a) Rat stepper. Rat is placed in cloth harness and attached to end of 
motorized body-weight support (BWS) device. Orientation of rat’s 
torso is adjustable with lockable ball joint, and amount of support 
delivered to animal is precisely controlled through BWS device. Small 
robotic arms attach to each hind limb with neoprene straps. Rat can 
step bipedally in device so we can precisely control loading on hind 
limbs. Quadrupedal stepping is also possible. (b) Example of stepping 
activity (step height vs step length) measured for rat with moderate 
spinal cord contusion. Thin line shows position of endpoint of robot, 
which was attached to lower shank of rat. Thick line shows average 
step, computed with step-detection algorithm. Reprinted with partial 
alteration by permission from Nessler JA, Timoszyk W, Merlo M, 
Emken JL, Minakata K, Roy RR, De Leon RD, Edgerton VR, 
Reinkensmeyer DJ. A robotic device for studying rodent locomotion 
after spinal cord injury. IEEE Trans Neural Syst Rehabil Eng. 
2005;13(4):497–506. [PMID: 16425832]. (© [2005] IEEE.)
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passive mode, which allows for precise recording of hind-
limb position, similar to optical motion capture systems 
with automatic digitization. The robot arms can also per-
turb or assist stepping. We use the BWS system to adjust 
the loading level on the hind limbs to within a few grams. 
A similar device has also been developed for mice [11].

 We are using the rat stepper as a small-scale test bed 
to understand locomotor control and plasticity, with a 
view toward transferring promising training algorithms 
to human gait training. A recurring principle that we have 
found important during the development process is that 
the pattern of sensory input provided to the nervous sys-
tem determines the quantity and quality of the elicited 
movement. We briefly review several results that illus-
trate this principle.

Our first approach to developing a rat robotic device 
was to use a commercially available haptic robot (PHAN-
TOM® 1.0, SensAble Technologies, Inc, Woburn, Massa-
chusetts) to simulate a “virtual treadmill” [12]. We 
attached the robot to the bottom of the animal’s paws and 
programmed it to provide a support force during stance 
and to move freely along with the hind limb during 
swing. We chose this approach because it eliminated the 
need for a treadmill and allowed for convenient measure-
ment of the ground reaction forces using the robot.

Note that the rats stepped bipedally in experiments 
with this virtual treadmill, as well as in the other experi-
ments described here. The main reason we have studied 
bipedal gait is that it allows us to precisely control the 
load on the hind limbs. If the forelimbs are touching the 
ground, determining how much load they are bearing rela-
tive to the hind limbs is difficult. Since load strongly mod-
ulates gait patterns following SCI [13–14], studying 
bipedal gait allows us to better control this confounding 
variable. Studies of rat bipedal gait may also lead to 
insight into the human bipedal gait [15]. At the least, both 
bipedal rats and humans must solve the same basic prob-
lem of coordinating two articulated legs while supporting 
the body’s mass against gravity.

We tested the virtual treadmill concept using rats 
whose spinal cords were completely transected as neonates 
(n = 4). Neonatal-transected rats recover some weight-
supported stepping ability even without supraspinal input 
because of plasticity in the locomotor neural circuits in the 
spinal cord. However, the rats rarely stepped when we 
placed them on the virtual treadmill. We hypothesized that 
the reason for the lack of stepping was that the robot arms 
were attached to the bottom of the paws during swing and 

that this abnormal sensory input inhibited the swing phase 
of gait. We then moved the robot attachment point back to 
the metatarsus, behind the toes. The rats took steps more 
frequently but still not nearly as often as on a physical 
treadmill. With the metatarsal attachment, the inappropri-
ate stimulus to the toes was avoided during swing but an 
appropriate loading pattern was not provided to the toes 
during stance.

The results from the virtual treadmill experiment led 
us to switch strategies and attach the robot arms to the 
lower shanks of the rats as they walked on a physical 
treadmill. A physical treadmill provides a regular, abrupt 
transition in sensory input to the paws between load and 
no-load conditions. The shank attachment minimized 
obtrusive sensory input, while allowing measurement and 
manipulation of leg movement. We quantified how fre-
quently the transected animals stepped in the virtual and 
physical treadmill environments using power spectral 
analysis of the stepping trajectories [12]. The spectra for 
the physical treadmill had clear peaks at a stepping fre-
quency of about 1 Hz, whereas the spectra for the virtual 
treadmill had no discernible peaks, indicative of the spo-
radic nature of the stepping on the virtual treadmill. We 
subsequently improved the physical treadmill system by 
developing custom lightweight robot arms that further 
minimized the inertial and viscous load applied to the 
legs during stepping [10] (Figure 1).

In a second experiment highlighting the importance 
of somatosensory input for stepping, we tested the effect 
of a small change in load to the paw during stepping in 
neonatal-transected rats (n = 9 animals) [16]. We pro-
grammed the rat-robot arms to push downward on the 
lower shank during stance with a force proportional to 
the backward velocity of the paw. Forces of only 6 per-
cent body weight caused a repeatable 7 percent decrease 
in stance duration. Applying the perturbation to only one 
leg decreased stance duration in that leg, and the spinal 
cord adjusted the swing time of the contralateral leg to 
maintain stepping symmetry. This experiment confirmed 
that the lumbosacral spinal cord “listens” to the detailed 
pattern of load information provided to the paw and 
makes subtle adjustments to the stepping pattern based 
on what it “hears.”

We recently tested the rat stepper with spinally con-
tused animals [17–18], an injury model that mimics the 
most common SCI pathology in humans. A key feature 
of spinal contusion models is that a variable amount of 
descending control over the spinal neurons that generate 
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stepping is retained. Kinematic measurements of step-
ping are likely related to locomotor ability in these ani-
mals, yet establishing these relationships has been 
difficult. One problem we have encountered is that step-
ping can be difficult to elicit if the animals are too 
severely impaired. Moreover, animals that maintain 
enough descending control to choose not to step will 
often “allow” their hind limbs to drag on the treadmill. 
Since locomotor plasticity is use-dependent, training and 
evaluation would likely be more effective if stepping 
could be more reliably elicited across a range of contu-
sion severities.

Sensory information related to hind-limb extension 
and unloading plays an important role in the initiation of 
swing in animals with SCI [19–20]. Further, we knew 
from the stance-loading experiment described previously 
that the spinal cord responds to load information deliv-
ered to the hind limb by the rat stepper. Therefore, we 
hypothesized that robot-assisted extension of the hind 
limbs of spinally contused rats would increase the proba-
bility that the animals would initiate the swing phase of 
gait [18]. We programmed the rat stepper arms to assist in 
pulling the hind limbs backward along with the treadmill. 
This robot action prevented the paw from plantar flexing 
onto its dorsal surface by resisting upward movement of 
the lower shank. Contused rats (6 mildly, 10 moderately, 
8 severely injured animals, with contusions created by 
the Infinite Horizons Device [Precision Systems and 
Instrumentation, LLC, Lexington, Kentucky]) initiated 
swing with a significantly greater probability (75 ± 
16.9% standard deviation [SD], p < 0.001) and generated 
more steps in a 1-minute period (p = 0.03) when the rat 
stepper assisted in the extension of their hind limbs com-
pared with the treadmill pulling their hind limbs into 
extension with no robotic assistance (38.9 ± 16.6% SD) 
[18]. Thus, enhancing load- and/or position-related sen-
sory information with robot-assisted extension dramati-
cally enhanced swing probability across a range of 
contusion injuries.

To summarize, our results from the rat stepper high-
light the importance of avoiding disruptive sensory input 
and providing appropriate load-related sensory input to 
elicit stepping in rats with SCI. Similar principles likely 
apply to humans with SCI [13,21–22]. The implication is 
that robotic gait trainers should be designed to maintain 
appropriate patterns of loading on the feet and legs and 
phasing between the legs to increase the quantity and 
quality of stepping activity.

Capturing Therapist Expertise
Experienced therapists have developed knowledge 

about what type of manual assistance works best for gait 
training, although much of this clinical knowledge has 
not been validated by controlled research studies. We 
have developed a sensor system for measuring the forces 
and movements applied by therapists [23]. Two 6-axis 
force-torque sensors (JR3 Inc, Woodland, California), 
which also contain 6 axes of accelerometers, are attached 
to a customized, lightweight orthosis. A passive instru-
mented linkage (MicroScribe, Immersion Corp, San Jose, 
California) measures the position and orientation of the 
orthosis. The orthosis is designed to allow the therapist to 
assist in movement with handhold locations that are as 
close as possible to the ones used in manual training. The 
weight of the entire system is 2.0 kg. The seven therapists 
who have used the system during training so far have 
remarked that providing manual assistance through it 
feels different and more limiting than when they directly 
touch the subject but felt that they could provide ade-
quate assistance for stepping. Results from the system 
should thus be interpreted as reflecting the best a thera-
pist can do with the particular interface that the system 
provides, an interface akin to one that might be used by a 
gait-training robot (i.e., rigid, with sensors interposed) 
rather than the usual, hand-on-skin, contact of a therapist.

To date, we have measured manually assisted step-
ping of four subjects with SCI using the orthosis [23]. 
The University of California Irvine Institutional Review 
Board approved this and all the other experiments with 
human subjects described in this article. Each subject 
underwent one session of locomotor training with three 
to four therapists taking part. A total of seven therapists 
have been tested during the four sessions. Preliminary 
results show that each experienced therapist assisted dif-
ferently, both in terms of the forces provided and the 
resultant kinematics (Figure 2). For the same patient and 
during the same session, greater inter- than intratherapist 
variability was noted in the forces and kinematics during 
stepping.

Robotic gait-training devices will standardize the most 
effective locomotor training. Such standardization may 
represent a substantial improvement over the large inter-
therapist variability that is quantifiable even with highly 
experienced human therapists, although this possibility 
assumes that an optimal pattern of assistance exists and 
remains to be tested. Also, some level of intra- or interther-
apist variability may be beneficial for training the nervous 
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system, because it may help the nervous system learn to 
generalize across different training conditions and perhaps 
across real-world variances.

We plan on using the instrumented orthosis to possi-
bly determine an optimal training technique by correlat-
ing short-term outcome measures (e.g., muscle activity 
and mechanical work) of the locomotor ability of patients 
with SCI with specific parameters that describe the 
mechanical assistance provided by different therapists 
(e.g., force magnitude and timing, stiffness).

Measuring Locomotor Adaptation
We have developed a lightweight robotic device for 

studying motor adaptation during stepping on a treadmill 
[24] (Figure 3). The robot, Ambulation-assisting Robotic 
Tool for Human Rehabilitation (ARTHuR) provides 
high-bandwidth force control at one attachment point in 
the parasagittal plane (i.e., bottom of foot, lower shank, 

or knee). It uses two moving coil forcers to drive either 
end of a two-bar linkage.

We have used ARTHuR to implement a robotic proto-
col that has been very useful for understanding motor 
adaptation of the arm. This protocol uses a lightweight 
robotic device to apply a novel dynamic environment (or 
“force field”) to the arm and measures the motor response 
to this force field during reaching or drawing movements 
[25]. The novel dynamic environment is often referred to 
as a “force field” because it is typically a vector field of 
forces that depend on the state (i.e., position and velocity) 
of the arm. The protocol has been used extensively for 
studying arm movement in nondisabled subjects, which 
demonstrates that internal models are widely used for 
motor adaptation and control [26]. An internal model is a 
neural transformation between sensory input and motor 
output that is used by the nervous system to predictively 
cancel perturbing forces. The nervous system rapidly 

Figure 2.
(a) Instrumented orthosis for measuring forces and motion applied by human therapists during locomotor training. Custom orthopedic splint is 
attached to right shank of patient. Therapist interacts with subject through 2 force-torque sensors attached to splint, with handholds close to ones 
used in manual training, distal to knee and proximal to ankle. Position and orientation of orthosis is measured with digitizing linkage 
(MicroScribe, Immersion Corp, San Jose, California). (b) Horizontal forces applied by 3 different experienced therapists on right knee during 
11 min of locomotor training with same patient at same speed of 2 mph. Each therapist stepped patient for 3 trials of approximately 20 steps. 
Patient’s impairment classification was American Spinal Injury Association D. Notice that intertherapist variability was much greater than 
intratherapist variability. Reprinted with partial alteration by permission from Galvez JA, Kerdanyan G , Maneekobkunwong S, Weber R, Scott 
M, Harkema SJ, Reinkensmeyer DJ. Measuring human trainers’ skill for the design of better robot control algorithms for gait training after spinal 
cord injury. In: Proceedings of the IEEE 9th International Conference on Rehabilitation Robotics: Frontiers of the Human-Machine Interface; 
2005 Jun 28–Jul 1; Chicago, IL. New York: IEEE: 2005. p. 231–34. (© [2005] IEEE.)
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builds and alters internal models to move the arms in a 
coordinated fashion.

Initial studies with ARTHuR demonstrated that the 
unimpaired motor system uses internal models to control 
the leg during the swing phase of gait [27–28]. In one 
experiment, we applied a viscous force field to the lower 
shank of nondisabled subjects as they stepped on a tread-
mill. The force field produced a vertical perturbing force 
proportional to the subject’s horizontal shank velocity 
during swing. When the force field was initially turned 
on, the subjects stepped higher than normal because the 
force field pushed their leg upward (Figure 3). The sub-
jects then adapted to the field after about 10 steps and 
returned toward their normal swing trajectory. When the 
field was unexpectedly turned off, they exhibited an 
aftereffect, stepping lower than normal. The aftereffect 
gradually disappeared after another 10 to 20 steps. The 
presence of the aftereffect indicates that the locomotor 
system adapted to the field by predictively canceling it, 
which is consistent with the use of an internal model.

We recently also found that the process of motor adap-
tation and internal model formation is well described by an 
error-based learning law with a “forgetting factor” [28–29]. 
That is, the time series of step-height errors in the force 
field was well predicted by the learning law

where xi = the step height on the ith step, ui = the peak 
force from the leg on the ith step, xd = the desired step 
height, g = learning gain, and f = forgetting factor.

This learning law interacts with the spring-like model 
of the leg dynamics

where K = leg stiffness and Fi = the peak vertical force 
from the robotic force field on the ith step. The parame-
ters of this model can be identified with multiple linear 
regression of experimental data. The model explains 70 
to 80 percent of the variance of step-height error during 
stepping in the force-field environment [28].

The two key features of this proposed neural learning 
law are error-based learning and forgetting. Error-based 
learning refers to a process that describes how the nervous 
system forms an internal model by adjusting its motor 
output in proportion to the experienced step-height error. 
Forgetting refers to a process that describes how the 

Figure 3.
(a) Ambulation-assisting Robotic Tool for Human Rehabilitation 
(ARTHuR) leg robot. Device uses linear motor with 2 forcer coils and 
V-shaped linkage to accommodate and drive motion of apex in 
parasagittal plane. Apex is attached through padded cuff and revolute 
joint to subject’s lower shank or foot bottom. (b) Step trajectories of 
lower shank during exposure to viscous force field applied with 
ARTHuR. Force field pushed upward on leg during swing with force 
proportional to leg’s forward velocity. Shown are normal stepping 
trajectory in null field ( ); “direct effect,” which is first step in force 
field (Δ); step produced after adaptation to field exposure ( ); and 
aftereffect, which is first step in null field (◊). (c) Step-height error, 
referenced to normal stepping height, before, during, and after 
application of force field. Force field was turned “on” at step 10 then 
“off” at step 35. Fit of error-based learning model is also shown for 
this subject (dashed line). For this subject, R2 = 0.86. Reprinted with 
partial alteration by permission from Emken JL, Reinkensmeyer DJ. 
Robot-enhanced motor learning: Accelerating internal model 
formation during locomotion by transient dynamic amplification. 
IEEE Trans Neural Syst Rehabil Eng. 2005;13(1):33–39. [PMID: 
15813404]. (© [2005] IEEE.)

ui+1 fui g xi xd–( ) 1( ),–=

K xi xd–( ) ui Fi 2( ),+=
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nervous system attempts to reduce the force when errors 
are small. The average forgetting factor, f, that we have 
identified for stepping was 0.77 ± 0.1 SD for 10 subjects, 
a value significantly less than 1 (two-tailed t-test, p < 
0.001) [28–29]. Thus, the nervous system acts as if it 
gradually “forgets” the motor command when trajectory 
errors are small. We have also recently shown that the 
learning law, Equation (1), implements an optimization 
procedure: it minimizes a cost function that is a weighted 
sum of error, force, and change in force [30]. The forget-
ting process is the mechanism used by the nervous system 
to minimize the force component of the cost function.

Understanding the computations that underlie motor 
adaptation will provide insight into how motor adaptation 
can be improved. For example, since motor adaptation is 
driven by kinematic error, providing a larger kinematic 
error should make motor adaptation occur faster. We 
recently demonstrated this phenomenon for nondisabled 
subjects as they adapted to a viscous force field applied 
by ARTHuR [28] in an adaptation experiment similar to 
the one described previously. We used ARTHuR to tran-
siently amplify the viscous force field for one step by an 
amount determined by the computational model. Tran-
siently amplifying the force field briefly increased the 
kinematic error and resulted in the subjects adapting to 
the force field in 25 percent less time.

To summarize, our experiments with ARTHuR indi-
cate that a key computational process underlying loco-
motor adaptation is error-based internal-model formation 
with forgetting. This process is a form of effort-error 
optimization [30]. Individuals with SCI who have some 
preserved descending control are likely to make at least 
partial use of this optimization process as they learn to 
walk again. Following neurological injury, the altered 
response dynamics of the locomotor system might be 
viewed as a “virtual force field” that must be learned and 
compensated for to allow the subjects to walk again. If 
so, amplifying, rather than reducing, stepping errors may 
prove more effective for increasing the speed of learning 
in some rehabilitation situations. At the least, we want 
patients to experience some trajectory errors during gait 
training, rather than being rigidly driven through a step-
ping pattern.

Computational Models of Movement Training
Currently, a lack of mathematical models exists to 

provide a possible rationale for how locomotor training 
might work. If an effective robotic-training algorithm 

exists, it should be mathematically describable through 
reasonable models of motor adaptation. Such models are 
desirable because they make assumptions concrete and 
help generate testable hypotheses.

We previously developed an adaptive Markov model 
of sensorimotor control to study how different types of 
mechanical assistance would theoretically affect recovery 
[31]. The model assumes that (1) the central nervous sys-
tem probabilistically interprets proprioceptive information 
in real time to generate motor output, (2) sensorimotor 
pathways become more reliable with repetitive activation 
in a sort of Hebbian learning, and (3) normal sensory input 
sometimes elicits abnormal motor output following neuro-
logical injury because of disrupted neural organization. 
The model predicts that the best movement recovery 
occurs when an external trainer intervenes to correct 
errant movements on an “as-needed” basis compared with 
no or continual assistance.

We also developed a model of locomotor training 
based on the learning law described in the previous section 
[32]. This model assumes that the nervous system recovers 
movement ability after injury by relearning the transfor-
mation between a desired movement and the required 
muscle activation patterns, i.e., by learning an “internal 
model” of its own altered neuromuscular dynamics.

More specifically, assuming that human motor adap-
tation following SCI is well modeled by the learning law 
in Equation (1), we asked the question, “How would 
such a process respond to mechanical assistance provided 
by a robotic device?” [32]. For these simulations, we 
assumed that the nervous system adapted according to 
Equation (1); i.e., we assumed that it iteratively formed 
an internal model of any perturbing forces. We modeled 
the robotic device as a position-controlled device that 
produced a force Ri proportional to the step-height error, 
with a gain G so that

We also assumed that the limb behaved like a spring 
with stiffness, K, in response to muscle force ui and a per-
turbing force, F, all assumed to operate perpendicular to 
the swing trajectory so that

To simulate rehabilitation, we imagined F to be an 
internal “virtual” force field caused by damage to the 

Ri G xi xd–( ) .–= 3( )

xi
1

K G+
-------------- ui F+( )– xd .+= 4( )
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neuromuscular system. For example, if a patient had dif-
ficulty lifting the foot during the swing phase of gait, this 
could be viewed as the effect of a virtual force that 
pushed the leg downward. 

We made the simulated robotic training device adap-
tive by adjusting the position control gain Gi for each trial 
i based on the trajectory error in a process that mimicked 
the human controller so that

where fR < 1. In other words, the robot device increased 
its stiffness if movement errors were large and decreased 
it if they were small, with the relative change controlled 
by the robotic forgetting factor fR and gain gR. Thus, the 
learning system contained two interacting adaptive con-
trollers; i.e., the simulated neural controller that tried to 
model the virtual force F to reduce trajectory errors and 
the simulated robot controller that increased the “firm-
ness” of assistance when trajectory errors were large. We 
simulated their interaction for different values of f, g, fR, 
and gR, until the error converged (500 iterations).

Figure 4 shows typical behavior as a function of the 
robot forgetting factor, fR, where the other parameters 
were f = 0.9, g = 0.5, gR = 0.5, K = 1, G1 = 100, and xd = 
0. These specific values were chosen arbitrarily; the gen-
eral behavior described here is robust to a wide range of 
specific values, with the relative relationship between the 
robot forgetting factor and the human forgetting factor 
playing the key role in determining the overall type of 
behavior. Increasing fR decreased the maximum trajec-
tory error experienced throughout training (Figure 4(a)), 
because the robot assisted more when it slacked less. 
However, the simulated neural system relied more on the 
robot’s assistance when the robot did not forget (fR = 1) 
and never learned to model the force-field perturbation 
(Figure 4(b)).

The critical determinant of whether the neural system 
learned to model the force field was the relative value of 
the robot and neural forgetting factors. If the neural sys-
tem forgot more quickly than the robot, then the neural 
system began to rely on the robot and did not learn. How-
ever, if the robot forgot too quickly, then the neural sys-
tem experienced large trajectory errors.

In gait training, large errors from a lack of mechani-
cal assistance could lead to falls, which could prevent 
movement practice, cause injury, and cause a loss of con-
fidence in one’s abilities or in the efficacy of the training. 

The implication of the simulation is that an optimal 
robot-training algorithm will forget just fast enough to 
“out-forget” the nervous system but not fast enough that 

Gi+1 f GR i gR xi xd– 5( ),+=

Figure 4. 
Simulation results from computational model of adaptive robot trainer 
coupled to adaptive neural controller. (a) Trajectory error as function 
of robot forgetting factor. As robot forgot more quickly (forgetting 
factor fR → 0), maximum (Max) trajectory errors became larger. (b)
Final commands learned by neural and robot systems. As robot forgot 
less quickly (forgetting factor fR → 1), neural controller failed to learn 
how to counteract perturbation (final motor command Uf → 0). 
Reprinted with partial alteration by permission from Reinkensmeyer 
DJ, Aoyagi D, Emken J, Galvez J, Ichinose W, Kerdanyan G, Nessler 
J, Maneekobkunwong S, Timoszyk B, Vallance K, Weber R, De Leon 
R, Bobrow J, Harkema S, Wynne J, Edgerton V. Robotic gait training: 
Toward more natural movements and optimal training algorithms. In: 
Proceedings of the 26th Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society; 2004 Sep 1–5; San 
Francisco, CA. New York: IEEE; 2004. p. 4818–21. (© [2004] IEEE.)
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falls become a possibility. The principle is similar to that 
of the use of training wheels for learning to ride a bicy-
cle, with special care given to continuously adjusting the 
height of the training wheels to the rider’s ability.

We have recently shown that this principle can also be 
derived by assuming that the robotic movement trainer 
minimizes a weighted sum of kinematic error (i.e., it lim-
its movement error) and force (i.e., it assists with the least 
force possible) [33]. That is, the assist-as-needed principle 
can be expressed as an optimization problem. The solu-
tion to this problem is a robotic controller that systemati-
cally “backs off” on the level of assistance it provides, 
similar to the controller in Equation (5). We recently 
experimentally tested the controller with a nondisabled 
subject [33]. The controller helped the subject learn an 
internal model, while creating smaller than normal kine-
matic errors for the task of walking on a treadmill in the 
presence of a novel dynamic environment (i.e., the vis-
cous force-field environment described previously). Thus, 
this work demonstrates the feasibility of deriving robotic 
controllers for motor training based on mathematical 
models of learning and optimization principles.

DEVELOPMENT OF A GAIT-TRAINING ROBOT

Working Hypotheses: Normalize Sensory Input and 
Assist as Needed

Our efforts to develop a gait-training robot for 
humans are driven by two main hypotheses that are 
derived from research with the tools described in the pre-
vious section. First, we hypothesize that a robotic device 
that generates as normal as possible sensory input will 
increase locomotor activity and lead to better locomotor 
recovery. We are, therefore, developing a robotic device 
that interfaces with the legs on flexor surfaces during 
flexion only and extensor surfaces during extension only 
(Figure 5). The device also allows naturalistic pelvic and 
leg motion as well as arm swing, which facilitates the 
normal dynamics of walking.

Second, we hypothesize that assisting in movement 
only as needed will be more effective than providing a 
fixed amount of assistance, in the sense that such assis-
tance will produce faster and/or better recovery. The 
rationale here is that the nervous system must eventually 
experience the dynamics of unassisted walking to learn to 
control those dynamics. This rationale is supported by 
subjective reports from experienced therapists, which we 

hope to verify quantifiably using the instrumented ortho-
sis described previously. It is also supported by the com-
putational models reviewed in the previous section, 
which model locomotor adaptation as a Hebbian-like 
learning process or, alternatively, as a process of learning 
an altered sensorimotor transformation while limiting 

Figure 5.
Pneumatic gait training robot: pelvic assist manipulator (PAM) and 
pneumatically operated gait orthosis (POGO). Each side of PAM is 
composed of 3 pneumatic actuators that attach to belt worn by 
subject; 3 cylinders form tripod. Lines of action of left side cylinders 
are labeled with arrows. Each side of POGO is composed of 2 
pneumatic cylinders and telescoping rail that extends from PAM belt 
to cuff on lower shank. Telescoping action of rail is shown with 
dashed arrow. Knee cylinder is mounted midway down rail and 
pushes on hamstrings tendon and pulls on patella tendon (arrow at 
knee shows line of action). Hip cylinder (visible in middle of PAM) 
rotates rail and thus flexes leg by pushing on achilles tendon or 
extends hip by pulling on tibialis anterior tendon (curved arrow 
shows motion of rail that results from actuation of hip cylinder). 
Subject also wears harness connected to force-controlled body-
weight support system (not visible).
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errors. To allow for the possibility of assistance-as-
needed, we are developing a robotic device that can apply 
a wide range of forces, from fully assisting to “just going 
along for the ride.” Assistance-as-needed is then 
achieved in part by using a compliant position-controller 
that only applies forces when the stepping pattern devi-
ates from the normal pattern. The goal of assistance-as-
needed is also aided by a control algorithm that synchro-
nizes the assistance of the robot to the stepping pattern of 
the subject, thereby ensuring that appropriate forces are 
applied at appropriate times.

POGO: Pneumatically Operated Gait Orthosis
The leg robot ARTHuR has the potential to be used 

as a gait-training device, but it is relatively expensive and 
cannot assist at both the knee and the lower shank as 
experienced therapists commonly do. We are therefore 
exploring an alternate design for a leg robot, called the 
pneumatically operated gait orthosis (POGO). POGO is 
composed of two pneumatic cylinders that are fixed to a 
telescoping rail system that extends from a hip belt to a 
molded cuff around the lower shank (Figure 5). One cyl-
inder pushes and pulls between the hip belt and the rail, 
thus flexing and extending the hip. A second cylinder 
pushes and pulls between the middle of the rail and a 
strap wrapped just below the knee, thus providing knee 
flexion and extension.

This design has several advantages. First, pneumatic 
cylinders are inexpensive and relatively lightweight for 
the amount of force they can deliver. Using the nonlinear 
control laws described here, we can control their force, 
position, and compliance. Second, since the knee cylin-
der is referenced off a rail that extends from hip to shank, 
it cannot hyperextend the knee. Third, the entire system 
is referenced to the hip belt and therefore accommodates 
pelvic swivel and tilt. Fourth, the leg attachments are 
positioned to mimic the handholds used by experienced 
therapists, pushing on the flexor tendons (hamstring and 
tibialis anterior tendons) when assisting in leg flexion 
and the extensor tendons (achilles and patellar tendons) 
when assisting in leg extension. We are currently per-
forming initial testing of POGO in subjects with SCI.

PAM: Pelvic Assist Manipulator
An important consideration in generating normal sen-

sory input during gait training is pelvic motion. Existing 
robotic gait trainers restrict pelvic motion to 1 DOF [5–6]. 
However, the pelvis undergoes three translational dis-

placements and three angular displacements during nor-
mal locomotion. These displacements are tightly coupled 
to step rate and stride-length parameters [34]. Lateral pel-
vic motion is especially important for shifting load 
between legs. As found with the rat robot [14], and for 
humans in other studies [3], load-related afferent input is a 
powerful input into the locomotor controller that drives 
spinal plasticity. Pelvic rotation contributes to the swing 
phase of gait and is carefully coordinated by experienced 
human gait therapists. Optimal control theory suggests 
that pelvic motions can be manipulated to assist in the 
swing motion of the leg [35].

We have therefore developed a device that can 
accommodate and control naturalistic pelvic motion [36–
38] (Figure 5). The pelvic assist manipulator (PAM) con-
sists of two, 3 DOF pneumatic robots that attach to the 
back of a rigid belt worn by the subject. The PAM 
attaches to the back of the belt so that hand swing is not 
impeded. The PAM has 5 DOF that provide control of 
three translations and two rotations, i.e., pelvic rotation 
and pelvic obliquity. Pelvic tilt cannot be controlled. A 
separate force-controlled overhead BWS system (Robo-
medica Inc, Irvine, California) unloads the patient as 
needed. The PAM’s hip belt is also the base of support for 
the POGO.

Control Strategies
To control the pneumatic cylinders in the POGO and 

PAM, we model and cancel the nonlinear compressible 
air flow dynamics for each cylinder and servomechanism 
valve and use pressure sensors on both sides of the pis-
tons for force feedback [37,39]. This technique allows us 
to achieve good force or position control. In force-control 
mode, we can command the PAM or POGO to avoid 
applying forces to the subject, thus allowing the robots to 
move along naturally with the patient- (or therapist-) 
driven movements while measuring those motions. In 
position-control mode, we can command the PAM or 
POGO to move the subject’s pelvis and legs in a desired 
pattern with a proportional position controller. If the 
actual stepping pattern matches the desired pattern, then 
the robot applies no force, thus contributing toward the 
assistance-as-needed goal.

We have demonstrated the PAM’s ability as a teach-
and-replay device [37]. In this experiment, a nondisabled 
subject walked on the treadmill at different speeds while 
the PAM operated in a back-drivable mode (zero-force 
control). The PAM recorded motion capture data for 50 s. 
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We then identified step cycles based on threshold cross-
ings and took an average of the 5 measured DOF of step 
data over all cycles, which produced a mean pelvic tra-
jectory at each treadmill speed. We then replayed this tra-
jectory against a 45 kg, bungee-suspended punching bag 
with a stiff proportional-derivative controller that used 
the nonlinear force control method. The root-mean-
square tracking error was less than 1 cm for the left-right 
component of the desired pelvic trajectory for one period 
of the gait cycle at three different speeds up to 1.5 m/s.

When we applied this teach-and-replay technique to 
a nondisabled subject, the subject had difficulty synchro-
nizing his movements with the gait pattern reproduced by 
the PAM, even though that gait pattern had been recorded 
from the subject himself. This difficulty was because 
small variations in gait timing existed, even during nor-
mal walking. The PAM allows these variations because it 
is compliant and allows for the possibility that the subject 
will move out-of-phase from the robot.

To solve this synchronization problem, we intro-
duced foot switches to detect the gait timing in real time 
and developed a feedback control algorithm that adjusts 
the playback speed of the gait pattern [38]. The feedback 
algorithm measures the error between the desired and 
actual stepping period and limb phasing and makes small 
adjustments to the playback speed of the desired gait pat-
tern to compensate for these errors. The algorithm is 
effective in synchronizing the robotic assistance, even 
when the nondisabled subjects change their step size and 
period. Good synchronization substantially reduces the 
power delivered by the PAM to nondisabled subjects dur-
ing normal stepping [38]. Thus, feedback-based synchro-
nization appears to contribute to implementing the assist-
as-needed principle; i.e., it ensures that the robot inter-
venes only when the overall stepping pattern is poor, 
rather than when the timing of an otherwise good pattern 
is slightly different from the averaged stepping pattern.

We are currently working on other strategies for 
implementing the assist-as-needed principle, which could 
be used along with feedback-based synchronization. One 
possibility is to modulate the impedance of the robot 
based on the sensed trajectory tracking error, with the 
adaptive law given in Equation (5). However, the robot 
cannot be made to act very stiffly because of the natural 
compressibility of the air used to power it. Another strat-
egy is to modulate the level of force the robot applies 
based on the trajectory tracking error. We have imple-
mented an interface that achieves this force modulation 

by allowing the therapist to spatially scale the desired 
position trajectories of the PAM and POGO. Enlarging 
the desired trajectories causes the robots to apply more 
force and create bigger steps but still maintain an appro-
priate phasing and a “soft” feeling because of the robot’s 
compliance. We plan to explore the possibility of auto-
matically scaling the trajectories based on tracking error 
with an adaptive law similar to Equation (5).

DISCUSSION AND CONCLUSIONS

We are developing a toolbox of technologies to under-
stand and optimize robotic gait training. Our results with 
the rat stepper highlight the importance of maintaining 
appropriate somatosensory input to elicit stepping follow-
ing SCI. These results are consistent with recent clinical 
results in patients with SCI [13,21–22]. Initial work with 
computational models of motor training following SCI 
suggests that assisting in movement only as needed will be 
more effective than providing a fixed amount of assistance, 
because assistance-as-needed can limit stepping errors, 
while still allowing learning of a novel sensorimotor 
transformation. If larger stepping errors are tolerable, then 
amplifying errors may accelerate learning, as reviewed 
here for stepping experiments with nondisabled subjects 
[28] and elsewhere for reaching movements by nondis-
abled and stroke subjects [40–41].

The rationale for providing assistance-as-needed and 
naturalistic sensory input during gait rehabilitation in 
individuals with SCI still remains to be validated experi-
mentally. A useful tool for testing this rationale would be 
a robotic system that can be moved by the patient with a 
small resistance but that can also provide large forces 
when needed to create naturalistic walking movements. 
Preliminary control performance testing with the PAM 
and POGO robots reviewed here suggests that these 
devices meet these criteria. Our initial work toward 
implementing assistance-as-needed with these robots has 
included using a compliant proportional position control-
ler and automatically synchronizing the robot to the sub-
ject based on real-time measurement of foot falls so that 
the robot “goes along for the ride” if the subject is step-
ping with a normal pattern, even if the pattern has small 
variations in timing. To conclude, we discuss several key 
goals for future research.

We will seek to identify optimal training algorithms 
using the rat stepper. We are currently testing the hypothesis 
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that assisting only as needed produces better outcomes than 
fixed assistance. Experimental results with robotic training 
of spinal-transected mice support this hypothesis [42].

 Using the instrumented orthosis that measures the 
forces and motion applied by human therapists, we will 
identify the impedance control and timing features asso-
ciated with eliciting better stepping. Our goal is to codify 
these features into control software for the PAM and 
POGO. The PAM and POGO are amenable to human-
like control algorithms because they are strong yet inher-
ently compliant because of their use of air power.

For the motor adaptation and modeling studies, we 
intend to assess to what extent individuals with varying 
severities of SCI adapt using error-based internal-model 
formation. Another key question is whether error-
amplification techniques can enhance motor adaptation. 
We will also refine our computational models to provide 
theoretical guidance for developing training algorithms 
and to make our assumptions and hypotheses mathemati-
cally concrete.

Finally, we have begun preliminary testing of the PAM 
and POGO in subjects with SCI. Initial results with five 
subjects with a range of injury severities suggest that the 
PAM and POGO can adequately replay a pattern of step-
ping measured with the passive robot as therapists manually 
stepped the subjects. During replay, no human therapist was 
required at the pelvis, and the therapists at the legs assisted 
with greatly reduced effort, only guiding foot placement 
and preventing foot drop. Video of the robot with a subject 
with SCI can be found at http://www.eng.uci.edu/
~dreinken/first_clinical_testing_of_gait_robots.htm. We are 
working now to determine whether the pattern of muscle 
activity that the PAM and POGO induce is similar to that 
elicited by experienced human therapists. We will then 
determine whether providing naturalistic gait mechanics, 
appropriate sensory input, and adjustable levels of well-
timed assistance produces better training outcomes than 
devices that do not have these features, as quantified by the 
rate and extent of recovery.
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